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COMPARISON OF SIX INTEGRATORS USED
IN LONG-TERM RADAR INTEGRATIONS

INTRODUCTION

Because radar signals from targets persist over time, detection improvement can be obtained
against noise, clutter, and interference which have different characteristics through signal processing
such as integration. Most of the integration studies, coherent or noncoherent, have been conducted on
target signals which do not move appreciably in range or azimuth during the processing time [1]. How-
ever, some work has been conducted on integration over long time frames where target motion is
appreciable [2, 31. In these studied, binary integration was studied using integrations which accounted
for linear target motion. Basically an intermediate threshold was set which allowed a considerable
number of detections. Then the final detector required at least a given number of detections to be
present for any possible target motion. From these studies, it appears that both detection and false-
alarm control improvement can be obtained.

We compare the characteristics of six different long-term integrators which account for linear tar-
get motion. In particular, we are concerned with dense target environments. Can we properly sort out
the true targets in the dense set of signals, (or control the false detections), and still obtain a significant
improvement in target detectability due to long-term integration? This situation can arise in sensitive
radars which will detect insects, birds, angels, etc., as well as air targets of interest, some of which may
be about the same size. A very similar situation arises when there are targets embedded in spikey
clutter. After all the targets are obtained, the ones of interest can be chosen on the basis of velocity.

We begin the study by defining the six integrators, and the models for the signals and noise. Only
range motion is considered for simplicity. It is impossible to study every possible situation, but the
models investigated are representative. We determine the thresholds required to maintain fixed proba-
bilities of false alarms for a number of background target conditions, length of integration, etc. We
then determine the probability of detection for the same conditions. Finally, a discussion of the results
is given.

DEFINITIONS

Amplitude Samples and Linear Motion

We define complex amplitude samples of the baseband radar signal as

X(n, k),

where n = 0, --- (N, - 1) dwells and k = 1, --- Ko range cells. The N, radar dwells and Ko range cells
are collected at uniform spacings in time and space. The magnitude of X(n, k) is designated
IX(n, k)|.

An index k'describing linear range motion is

k'= k - I np 

Manuscript approved November 7, 1983.
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where p is an integer index which represents the p-th range velocity which takes on values from -P 0 to
P0 . The symbol I means round the quotient to the nearest integer. Beginning with the range cell k on
the n = 0 dwell, the target exhibiting linear motion with velocity p will be located at the k' range cell on
the nth dwell. The spacings between adjacent velocity indices is set such that there is one range cell
change over N3 dwells between indexes of p and p + 1. The value of P0 is set by

|maximum radial distance a target moves in N, dwells|

I range resolution of radar

Although not necessary, the notation in the subsequent development becomes much simpler if we
rank order the amplitudes of the samples used in each integrator. For each value of k' formed from a
range k and velocity p, the n = 0 through N3 - 1 samples of IX (n, k') I are rank ordered in amplitude
and defined by

IXr (0, k, p)l smallest values of I x (n, k')l

for n = D, --- (N 5 - 1) given k and p

IX, (1, k, p)l next smallest value of IX (n, k')I

for n = 0, --- (N 3 -1) given k and p

Xc ((N3 - 1), k, p)1 largest value of lX (n, k')I

for n = 0, --- (N 3 - 1) given k and p.

This operation is performed for each new integration defined by p and k.

Figure 1 illustrates radar amplitude IX (n, k) I samples of a fast and slow linear motion target
when there is no noise present. The object of the integration is to use the target signals over all dwells
Ns in the detection process despite its motion in range. Since the target location and speed is unknown,
all possible candidates must be observed.

X(n,k) FAST
TARGET SLOW

(TARGET

w 7_/ T / =
OD

/ / / 4) /7 /¶y 1//fI

RANGE k

Fig. 1 - Representation of noise-free signals
before integration
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Integratien Equations

Two variants of three standard radar video integrators are compared; (1) square law, (2) linear,
(3) optimum (M out of N3 ) binary, (4) square law minus largest sample, (5) linear minus largest sam-
ple, and (6) M + 1 out of N3 binary integrators. These equations are:

Square Law
N3 -1

Y1(p,k)= £ IX, (n, k, p)1 2

n-0

Linear
N3-1

Y 2 (p,k)= Y I X, (n, k, p)
n-0

Binary (M out of N3)

Y 3(p,k) =IX, (Ns-M, k, p)I

Square Law Minus Largest Sample
N3-2

Y 4 (p,k)= I IX, (n, k, p) 12

n- 0

Linear Minus Largest Sample
N3-2

Y 5 (p,k)= I IX, (n, k, P)
n-0

Binary (M + 1) out of N3

Y 6 (p,k) IX, (Ns-M-1, k, p).

When a target is traversing with linear motion there will be one integrator output which will con-
tain target signals in all N3 dwells of the samples used in the integration. Figure 2 illustrates the
integrator output magnitude at the matched filter index location of range k and velocity p for two
different targets. The contributions due to these targets in other filters are not shown. As in other
radar integrators, an improvement in detection performance is expected. However, because of the
linear motion of the indexes, some target signals can appear in other than the intended integrator's out-
puts. The last three integrators, as discussed more thoroughly later, are designed to minimize this
effect of a signal entering an integrator which does not contain a valid target.

Models for Noise and Signals

Conventional radar signals can be expressed as

X(n,k) = SN(n,k) + ST(n,k),

where SN(n,k) is a complex number representing noise, and ST(n,k) is a complex number representing
signal. The usual radar thermal noise is expressed

SN(n,k) = go + j gQ,

3
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FAST
/TARGET

<. / SLOW
/ X / TARGET

RANGE k

Fig. 2 - Representation of noise-free signals
after integration

where g1 and gQ are independent zero mean Gaussian distributed random variables with standard devia-
tion CT and j is the square root of minus one. New samples are taken for each value of n and k and
each new trial.

For the signal ST(n,k), we generate N. Rayleigh fluctuating targets randomly distributed ir range
and velocity exhibiting linear motion. Furthermore, each target is assigned a random signal-to-noise
ratio (S/N). This can be accomplished in two stages by first obtaining intermediate signals

jg + jgQ for k = k*(i) - | f n1 )

Sa(1, n, k) = 0 for all other k,

where g1 , and gQ are independent zero mean Gaussian distributed random variables with standard devi-
ation OrT(l), k*(i) and p*(i) are the location of the ith target in range and velocity, respectively, and
Sa(ji, n, k) is the intermediate signal of the ith target. The total signal is given by

Nt

ST(n,k) = A S0 (i, n, k).
i= 1

The reason a two-step process was necessary was that more than one target was allowed to occupy the
same range and dwell sample. The signal standard deviation is Rayleigh distributed with standard devi-
ation of a T. Consequently, the average signal-to-noise ratio S/Nis given by UT/&T*. Finally, we define
a target density p by

N,
P =K,'

which has dimension of targets per range cell.

PROBABILITY OF FALSE DETECTION (False Alarm)

Ordinary Simulation Procedure

The probability of false detection is studied using Monte Carlo simulation. A computer is used to
emulate the integrators which operate on computer generated signals of the type previously described.
Using many trials, a histogram or probability density of the output signal Yj(p,k) amplitude is found.
The output signal is broken into L equally spaced intervals of width d which spans all reasonably likely
values of Yj(p,k). The Ith interval is computed by

I I Y1(pk)|
d

4
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where I can take on values from zero through L. We count the number of times the signal Yj(p,k) falls

into each interval I over a number of trials and divide by the number of trials to obtain a rough esti-

mate of the probability density. This procedure can be accomplished recursively for each new range

and velocity by

f(l) = f(1) + 8(p,k)/ND,

where 8(p, k) is one for ordinary Monte Carlo simulation, ND is the total number of trials, and f (1) is
the output probability density of the integrators. Initially we set f (1) = 0 for all l.

The probability of false detection, defined as the probability of Yj(p,k) exceeding a threshold l1

given no signal is present, can be obtained from
L

Pf f (l).
I= 1-

The normalized threshold is defined as

v = dl*/&T.

Consequently, we obtain the probability of false detection pf as a function of the normalized threshold

Two subsets of signals in Yj(pk) are excluded from being used in forming the histogram and,
consequently, not included in the probability of false detections. First, the edge effects are removed by
excluding the first and last P0 range cells in Yj(pk). Second, any valid target will cause signal to be
present in a number of neighboring range and velocity cells a's well as the intended one. Under normal
circumstances, target reports from these neighboring cells would be merged into the valid target report
range and velocity cell. Consequently, we exclude all range and velocity cells which are likely to con-
tain approximately two or more signals. Figure 3 shows this region of space for the given target.

VELOCITY p

k (-+ 1) VALID

{TARGET
Ns k* 

Ns X k+ (N25 +1)
P 2 ~~~~~2

RANGE k

Fig. 3 - Signals in cross-hatched region not included in signals used for computing the
probability of false detection

Importance Sampling

To circumvent using a very large number of samples when we wish to study low probability of

occurrence events, a technique called importance sampling [4, 5] is used. The basic procedure is to dis-
tort the probability densities used in an ordinary Monte Carlo simulation such that more events of

5
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interest occur than usual and then correct the measured statistics based on the distortion and samples.
This technique reduces the number of required samples and works well as long as the mechanisms
which cause the rare events are the same under no distortion and distortion.

The importance sampling is implemented as follows. We define the weight 8(pk) used in the
formation of the histogram as

8(p,k) = H WN(n,k') Ws(n,k') where k' = k-I | I.n=0 iN -ep

WN(n,k') is a weight which is evaluated by using only the noise portion of the sample X(n,k'), and
Ws(n,k') is a weight which is evaluated by using only the signal portion of the sample X(n,k'). If no
signal is present, then Ws(n,k') is one.

Specifically, we define WN(n,k') as the ratio of the true probability density to the distorted proba-
bility density evaluated at the noise sample values from the Gaussian-distributed random number gen-
erator. This is given by

-2 J f -~2 -2

WN(nVk) = o2 exp - 2 |T D ISN(n,k )|2|,1 21 T ~Dj 

where 0&D is the standard deviation of the distorted Gaussian distributed probability density.

Because more than one target is allowed to occupy the same range cell on the same dwell, the

computation of the Ws(nk') is slightly--more complicated. We first compute an intermediate weight
Wa(i,n,k'*) based on the ithe target by

2 _j_ 1 61(j) _ 1 21(j

Wa(iln,k ) = R & G)exp _ 2 I 2 D(|| SJ (i na Vk') | 2
(J T2(l) 2 J &~ 2 (j) D (13

where OrD(i) is the standard deviation of the distorted Gaussian distributed target signal of the ith tar-
get, and R is ratio of the true number of targets to the number of targets generated under distortion.
The weight Wa (in,k') is generated for only those values where Sa (in,k') has a nonzero value. Then
we find

Nt

Ws(n,k') = H Wa((i,n,k').

Noise-Only Results

We determined the probability of false detection when no targets were present. The high proba-
bility of false detections were obtained by using the ordinary Monte Carlo simulations, and the small
probability of false detections were obtained by using the importance sampling technique. In these
cases Ws(n,k') was always equal to one. Figures 4 to 9 show the results of the six integrators for
PO = 4 Ns. The results in Figs. 4 to 6 also can be found in Refs. 6 to 8. The value of M that was used
in the binary integrator is the optimum one found in Ref. 8 for ordinary noncoherent integration. The
thresholds in Figs. 7 to 9 for a given probability of a false detection are a little less than those in Figs. 4
to 6 because of the removal of the largest sample or requirement of one more intermediate detection.
Even though the probability of false detection at any given range and velocity vs normalized threshold
is the same as standard noncoherent integration found in the literature, the overall number of false
detections on a radar is higher because of the (2Po + 1) times more opportunities. However, the false
detections are correlated over a finite period of time.

6
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o 1O 20 30 40 50 60 70 80 90 10 0110

NORMALIZED THRESHOLD y

Fig. 4 - Probability of false detection vs normalized
threshold given noise background (square law integra-
tor)

NORMALIZED THRESHOLD r

Fig. 6 - Probability of false detection vs normalized
threshold given noise background (binary integrator)
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Fig. 5 - Probability of false detection vs
normalized threshold given noise back-
ground (linear integrator)

NORMALIZED THRESHOLD y

Fig. 7 - Probability of false detection vs normalized
threshold given noise background (square law-largest
integrator)
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0 I-~~~~~~~~~~~~~~~~~~~ 

:il lo 4 

F 10~ 4 1200
0

I-~~~~~~~~~~~~~~~~~~~I=

0~~~~~~~~1 a,2 01 03

NORMALIZED THRESHOLD rNORMALIZED THRESHOLD 

Fig. 8 - Probability of false detection vs normalized Fig. 9-Probability of false detection vs normalized
threshold given noise background (linear-largest threshold given noise background (M + I binary
integrator) integrator)

False Detections Including Ghost Conditions

We next introduce target signals which can produce ghost detections due to target signals at ranges
and velocities that contain no real target. This can occur because an integrator can pick up a signal
from another target due to range index changes caused by the linear motion. Again we set Po = 4 Ns.
The probability of a false detection vs normalized threshold for the six integrators is shown in Figs. 10
to 15 for a target density of p = 0.1 and an SIN = 10 dB, in Figs. 16 to 21 for a target density of
p = 0.01 and a SIN = 10 dB, and in Figs. 22 to 27 for a target density of p = 0.1 and an SIN = 3 dB.

Observing these figures, we find generally that (a) the threshold must be raised when signals are
present to maintain the same false alarm rate as noise only; (b) the higher the signal amplitude, the
more the thresholds must be raised, (c) the higher the target density, the higher the thresholds must be
raised to maintain constant false detection rates; and (d) the integrators which remove the largest
sample or require higher values of M in the binary integrator do not require nearly as high thresholds
to maintain the same false detection rates. These generated thresholds are used subsequently in deter-
mining the probability of detection.

PROBABILITY OF DETECTION

Procedure

The probability of detection was obtained in the same manner as the probability of false detection
described previously, except only those range and velocity cells in the integrator output which are
matched to the target and contain signals are used in generating the statistics. To save computation, we
generated the signal and noise for each integrator by using one target only and ignored the case in
which two or more targets occupy the same range on the same dwell. The only effect this has on the
results is to produce a small, pessimistic error in the estimate of the probability of detection.

8
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Fig. 10 - Probability of false detection vs normalized
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integrator)
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threshold for p = 0.1 and (S7N) - 10 dB (binary
integrator)

0 10120 30

0

thehodfoU -01 n (o ) 10 dB (line

0

x0-
a,

a.10-6

0 140 20 30
NORMALIZED THRESHOLD y

Fig. 11 -Probability of false detection vs normalized
threshold for p - 0.1 and (s7) -1 ' 10 dB (linear
integrator)

10-I

0
H0-

106

a. 10 ~ ~ ~ T- =10dB(suae6a
threshld p 0.1 nd (S Ns

minus lagest inegrato 2

9



BEN H. CANTRELL

° 10 0 3

1o2

a. o

0 

NORMALIZED THRESHOLD 

Fig. 14-Probability of false detection vs normalized
threshold for p -0.1 and (s-T-) -10 dB (linear
minus largest integrator)

aI-

10-2
0

0

F J~~~~~~Ns'S

~~~0 ~~~IM'=2
co
I0

a- 11 1 

Ms=3

10-6

0 10 20 30 40 50 6
NORMALIZED THRESHOLD y

Fig. 15 -Probability of false detection vs normalized
threshold for p - 0.1 and (S/N) - 10 dB (m + 1
binary integrator)
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Fig. 16 - Probability of false detection vs normalized
threshold for p - 0.01 and (SN) - 10 dB (square law
integrator)
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Fig. 17 - Probability of false detection vs normalized
threshold for p - 0.01 and (SN) - 10 dB (linear
integrator)
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Fig. 18 - Probability of false detection vs normalized
threshold for p - 0.01 and (S7N) - 10 dB (binary
integrator)
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Fig. 20 - Probability of false detection vs normalized
threshold for p - 0.01 and (s5N) = 10 dB (linear-
largest integrator)

Fig. 19 - Probability of false detection vs normalized
threshold for p - 0.01 and (STN) - 10 dB (square
law-minus largest integrator)
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Fig. 21 - Probability of false detection vs normalized
threshold for p - 0.01 and (sTN) - 10 dB (M + I
binary integrator)
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Fig. 24 - Probability of false detection vs normalized
threshold for p - 0.1 and (SN) - 3 dB (binary
integrator)
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Fig. 25 -Probability of false detection vs normalized
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Fig. 26 - Probability of false detection vs normalized Fig. 27 Probability of false detection vs normalized
threshold for p - 0.1 and (7 in) - 3 dB (linear minus threshold for p - 0.1 and (5ths) - 3 dB (M + 1
largest integrator) binary integrator)

Detection Results

All the probability of detections v d are plotted vs (SiN) for a probability of false alarm of 10-6.
The thresholds required in the simulation are obtained from the probability of false detection vs nor-
malized threshold curves previously generated and shown in Figs. 4 to 27. In all cases P0 = 4 Nso

The probability of detection versus S/N for the six integrators are shown in Figs. 28 to 33 for the
case of one target present. We find that the detection curves in Figs. 28 to 30 are the same as the stan-
dard detection curves for equivalent noncoherent integrators using Rayleigh fluctuating targets found in

Ref. 1 Chapter 15, and Ref. 8. Figures 31 to 33 show small detection losses over those in Figs. 28 to
30 due to the removal of the largest sample or requiring M + 1 samples.

The probability of detection versus signal-to-noise ratio curves for ptg= 10-6 for the six integra-
tors are shown in Figs. 34 to 39. These curves were obtained by using higher thresholds caused by
assuming a target density of p = 0. 1 and an SI/N = 10 dB. In Figs. 40 to 45 detection curves are shown
for a target density of p = 0.01 and a S/_N = 10 dB, and in Figs. 46 to 51 for a target density p = 0.1
and a S/N = 3 dB.

Observing these figures, we find generally that (a) more detection losses occur for a higher back-
ground of other targets; (b) the larger the background targets amplitudes are, the more loss there is in
detections; and (c) the integrators which remove the largest signals or require M + 1 detections suffer
less detection loss than the other integrators when a background of other targets are present.
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Fig. 28 - Probability of detection vs SIN given noise
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Fig. 36 -Probability of detection vs SIN for p - 0.1 and
(S7KN) -10 dB (binary integrator)
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Fig. 37 - Probability of detection vs SIN for p - 0.1 and
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Fig. 44 - Probability of detection vs S/N for p - 0.01 and
(S7N) - 10 dB (linear-largest integrator)
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Fig. 45 - Probability of detection vs S/N for p - 0.01 and
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COMPARISON OF INTEGRATORS

S/N Improvement

We compare the integrators on the basis of signal-to-noise improvement on multiple dwells with
respect to the S/N required to detect a target on a single dwell using a square law and/or linear detector
for a fixed probability of false detection P1 and probability of detection Pd. The results for a Pf = 10-6
and Pd = 0.5 are shown in Figs. 52 to 55, and the results for a Pf = 10-6 and Pd = 0.9 are shown in
Figs. 56 to 59. The background conditions for each figure as to the target density and average S/N of
the background are listed on the figures.
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Fig. 56 - Comparison of six integrators on the basis of
S/N-improvement vs number of dwells given noise back-
ground, Pf _ 10-6, and Pd - 0.9
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Fig. 57 - Comparison of six integrators on the basis of
S/N-improvement vs number of dwells given
p -0.1, (SIN)- 10dB, Pf= 10-6, and Pd= 0.9
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Observing Figs. 52 and 56, the case of no other background targets, we find the one square law,
two linear, and three binary integrators obtain the same signal-to-noise improvement with the dwells
integrated as the standard noncoherent integration. This improvement can be quite significant. Conse-
quently, the results for the square law and linear integrators, with no other background targets,
represents an upper bound in performance and are shown as reference in the other curves. We note
that there is little loss in performance when the largest sample is removed or when we require M + 1
threshold crossings in the binary integrator as compared to each of the standard integrators.

We make these general observations (Figs. 53 to 59) when there is a background of targets: (a)
the square law is generally worse than the linear integrator; (b) the square law minus the largest sample
is worse than linear minus the largest sample; (c) and when the targets are strong and dense, the
integrators which remove the largest signal or require an additional intermediate detection perform
better than the standard integrators. The reasons for these results are: (a) an extraneous strong signal
in the linear integrator does not have the impact on the false detection rate and required threshold as
the square of the strong signal and, consequently, the linear detector performs best; and (b) the
integrators which remove the strongest extraneous signals perform better than the standard integrators
in a dense strong target environment because these thresholds can be lower. Using these conclusions,
we will only consider further the two most promising integrators: the linear minus the largest sample
and M + 1 binary integrator.

For the linear-minus-the-largest integrator, the S/N vs the number of dwells for a probability of
false alarm Pf = 10-6 is given in Fig. 60 for a Pd= 0.5 and Fig. 61 for a Pd= 0.9. Similarly, for the
M + 1 binary integrator, the S/N vs the number of dwells for a probability of false alarm Pf = 10-6 is
given in Fig. 62 for a Jd = 0.5 and Fig. 63 for a Jd = 0.9.

From Figs. 60 to 63 we note: (a) The medium target density p = 0.01 and no background target
cases yielded nearly the same detection results. (b) We take an increasingly larger loss with increasing
target strength and target density because more than one extraneous strong target signal will be in an
integrator; this would cause a ghost detection if the threshold were not raised. (c) The linear minus the
largest sample is slightly better than the (M + 1) binary detector for the cases studied.
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Fig. 61 - Comparison of the linear minus the largest
integrator on the basis of S/N-improvement vs
number of dwells for a number of target background
conditions, Pf - 10-6, and Pd - 0.9
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Fig. 62 - Comparison of the (M + 1) binary integrator on the
basis of S/N-improvement vs number of dwells for a number of
target background conditions, pf - 10-6, and Pd = 0.5
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False Detection Control

We compare the probability of false detection of each integrator in a background of targets based
on thresholds set for a thermal noise environment. We determine the thresholds for all six integrators
that yield a pf = 10-6 when only noise is present. We then determine the probability of false alarm
under various backgrounds using these thresholds. The results of this probability of false detection vs
dwells are shown in Figs. 64 to 66 where the target background parameters are listed on the figures.
We find from these figures that the linear minus the largest sample and (M + 1) binary detectors are
best at maintaining lower false detection rates when the thresholds are all set for Pf = 10-6 in thermal
noise. Observe in the dense environment (see Fig. 64), we obtained 10-4 false detection rate even
though the thresholds were set for thermal noise.

Fig. 64 - Probability of false detection for the six in-
tegrators vs number of dwells using a noise only back-
ground threshold set for Pf - 10-6 for a p - 0.1 and
(S7TN) - 10 dB target background
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Discussion

We have found that the linear minus the largest sample and the (M + 1) binary integrator did a
credible job of controlling the false detection rate with a fixed threshold even in a dense, fairly-strong-
target environment. Furthermore, we found that these integrators yielded probability of detections
which were near the upper bound. The reason these integrators performed well is that they controlled
the ghost target detection which were primarily obtained from a single target signal located in an
integrator that does not contain a target. The threshold did not have to be raised significantly to control
the false detections because the signals which would cause the false detection had been thrown out.
Consequently, since the threshold is nearly the same whether there are many targets or not, the proba-
bility of detection is near the upper bound.

The preceding discussion suggests two mechanisms for controlling the false detection rate. First,
by controlling the threshold, the second by requiring an integrator defined by either removing a few of
the largest samples from the linear integrator or by requiring a few more intermediate detections in the
binary integrator. The number of large samples removed from the linear integrator would depend on
the target density. For example, in a light target environment only the largest sample would be
removed, and in a heavy environment, possibly several of the largest samples would be removed.
Since it is the ghost targets which make up the false detections in dense environments, removing
several of the larger samples would not allow a ghost target to be formed from signals from several tar-
gets. The fewer number of large samples removed the smaller the detection loss. Similar operations
could be performed on the binary integrator.

A significant by-product benefit of the process is that velocity as well as location is obtained. If
the radar were sensitive so that it could detect birds and insects, the high-speed aircraft can be
separated easily from these other objects on the basis of velocity.

The results given in this report illustrate that detection improvement can be achieved for a
number of cases and that it was usually advantageous to exclude the largest sample. This was particu-
larly true in dense environments. Of course, the results are a function of the statistics and will vary
somewhat depending on the environment. Although it was virtually impossible to include a wide
variety of cases in the simulation, the cases run were representative of the performance one would
expect.

SUMMARY

Six long-term radar integrators which accounted for target motion were studied under the condi-
tions of a set of background targets. For the conditions studied, excellent false-alarm control and
detection improvement near the bounds for noise conditions could be obtained with the linear-minus
the largest sample and (M + 1) binary integrators. The reason for this result is that ghost targets can
appear and these integrators eliminated them with little loss in detection of true targets. The ghost tar-
gets are caused by a few (usually one but can be a few) real signals located in integrators which do not
contain real targets. By eliminating a few (one often is sufficient) of the larger signals or requiring
extra intermediate detections in the binary integrator, most ghost targets are suppressed. We
hypothesize that adaptive false-alarm control would involve both the threshold adjustment as well as the
number of larger signals removed in a linear integrator or number of additional intermediate detections
required in a binary integrator as a function of target density. Finally, since velocity is a by-product of
the integration, low-speed targets such as birds and insects, etc., can be separated from high-speed air
targets.
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